Search results for "matter [quantum chromodynamics]"
showing 10 items of 162 documents
DARWIN: Towards the ultimate dark matter detector
2016
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …
Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data
2017
We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…
Stellar Wakes from Dark Matter Subhalos
2017
We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses $\sim 10^7\,M_\odot$ or below. The detection of such subhalos would have implications for dark-matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through simulations the ability to detect subhalos using the phase-space model…
A fresh look into the interacting dark matter scenario
2018
The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of $\sigma_{\gamma \rm{DM}} < 8 \times 10^{-10} \, \sigma_T \, \left(m_{\rm DM}/{\rm GeV}\right)$ at $95\%$~CL, abou…
Sub-MeV dark matter and the Goldstone modes of superfluid helium
2019
We show how the relativistic effective field theory for the superfluid phase of helium-4 can replace the standard methods used to compute the production rates of low momentum excitations due to the interaction with an external probe. This is done by studying the scattering problem of a light dark matter particle in the superfluid, and comparing to some existing results. We show that the rate of emission of two phonons, the Goldstone modes of the effective theory, gets strongly suppressed for sub-MeV dark matter particles due to a fine cancellation between two different tree-level diagrams in the limit of small exchanged momenta. This phenomenon is found to be a consequence of the particular…
Aidnogenesis via Leptogenesis and Dark Sphalerons
2010
We discuss aidnogenesis, the generation of a dark matter asymmetry via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form "dark baryons" through an SU(3) interaction, and a (broken) horizontal symme…
Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data
2019
In view of the IceCube's 6-year high-energy starting events (HESE) sample, we revisit the possibility that the updated data may be better explained by a combination of neutrino fluxes from dark matter decay and an isotropic astrophysical power-law than purely by the latter. We find that the combined two-component flux qualitatively improves the fit to the observed data over a purely astrophysical one, and discuss how these updated fits compare against a similar analysis done with the 4-year HESE data. We also update fits involving dark matter decay via multiple channels, without any contribution from the astrophysical flux. We find that a DM-only explanation is not excluded by neutrino data…
The degenerate gravitino scenario
2010
In this work, we explore the "degenerate gravitino" scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogen…
Geometry, pregeometry and beyond
2005
This article explores the overall geometric manner in which human beings make sense of the world around them by means of their physical theories; in particular, in what are nowadays called pregeometric pictures of Nature. In these, the pseudo-Riemannian manifold of general relativity is considered a flawed description of spacetime and it is attempted to replace it by theoretical constructs of a different character, ontologically prior to it. However, despite its claims to the contrary, pregeometry is found to surreptitiously and unavoidably fall prey to the very mode of description it endeavours to evade, as evidenced in its all-pervading geometric understanding of the world. The question r…
Connection between certain massive and massless diagrams
1996
A useful connection between two-loop massive vacuum integrals and one-loop off-shell triangle diagrams with massless internal particles is established for arbitrary values of the space-time dimension {ital n}. {copyright} {ital 1996 The American Physical Society.}